

Reporte Semanal

http://www.sciesmex.unam.mx

Reporte semanal: 14 al 20 de enero de 2022

CONDICIONES DEL SOL

Regiones activas: 5

Hoyos coronales: 3 (dispersos), 1 ecuatorial

Eyecciones de masa coronal: 3 lentas tipo limbo.

Fulguraciones: 3 clase M.

El Sol muestra actividad baja.

CONDICIONES DEL MEDIO INTERPLANETARIO

Se registró el tránsito de una región de compresión con componente Bz sur intensa y prolongada.

CONDICIONES DE MAGNETÓSFERA

Índice K local: Se registraron tormentas geomagnéticas clase K=5.

Índice Dst: Se registró actividad moderada (-94 nT).

CONDICIONES DE LA IONOSFERA

Se registraron perturbaciones no significativas en la ionósfera.

Reporte semanal: Pronóstico 21 al 27 de enero de 2022

PRONÓSTICOS PARA LA PRÓXIMA SEMANA

Viento solar:

Se pronostica el posible arribo de una región de compresión.

Fulguraciones solares:

Es probable que se presenten fulguraciones clase C o mayores.

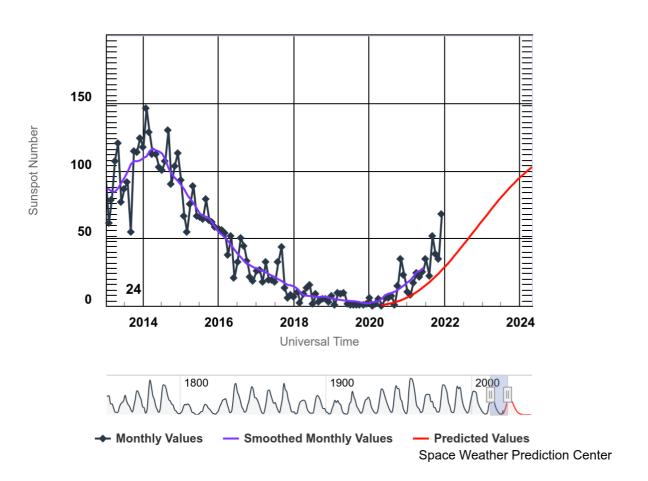
Tormentas ionosféricas:

Podrían presentarse afectaciones ionosféricas no significativas en los próximos días.

Tormentas geomagnéticas:

Podrían registrarse alteraciones menores en los próximos días.

Tormentas de radiación solar:

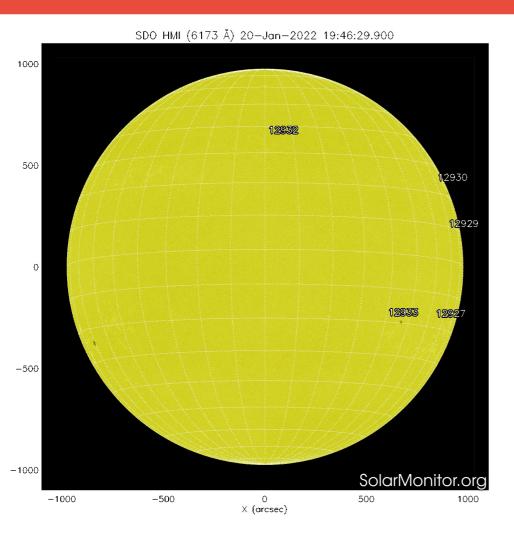

• Debido a la poca actividad, no se esperan tormentas en la próxima semana.

Ciclo de manchas solares y la actividad solar

ISES Solar Cycle Sunspot Number Progression

La figura muestra el conteo del número de manchas solares desde 2010.

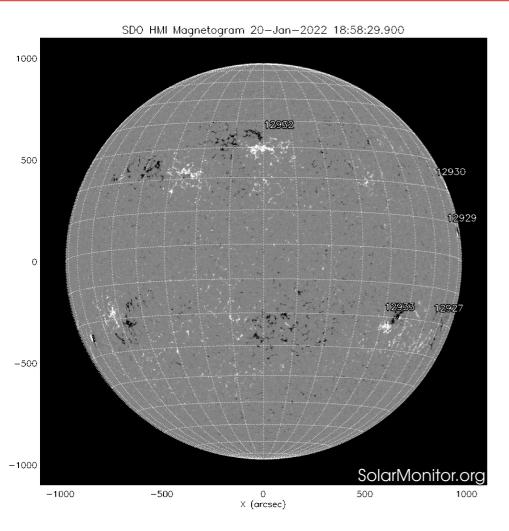
Entre más manchas solares presente el Sol, es mayor la posibilidad de que ocurra una tormenta solar.


Estamos iniciando el nuevo ciclo solar número 25.

http://www.swpc.noaa.gov/products/solar-cycle-progression

Fotosfera solar

La fotosfera es la zona "superficial" del Sol, donde aparecen las manchas solares. Regiones oscuras formadas por material más frío que sus alrededores y que contienen intensos campos magnéticos. Las manchas solares están relacionadas con la actividad solar.


La imagen reciente de la fotosfera presenta dos grupos de manchas solares en el disco solar (línea de visión Sol-Tierra) y tres más que están en el límite del disco solar (oeste).

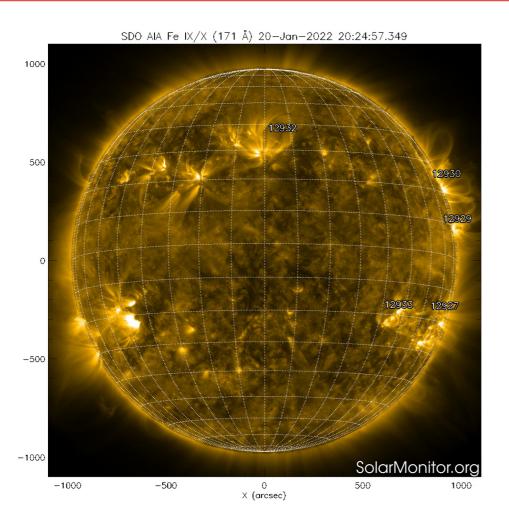
http://solarmonitor.org

Campos magnéticos solares

Un magnetograma solar permite identificar las regiones de intensos campos magnéticos solares. En general, estos campos magnéticos están asociados a manchas solares.

Las regiones de color blanco (negro) son zonas por donde salen (entran) líneas de campo magnético, correspondientes a polaridad positiva (negativa).

El Sol hoy:


El magnetograma muestra regiones magnéticas dispersas en el disco solar.

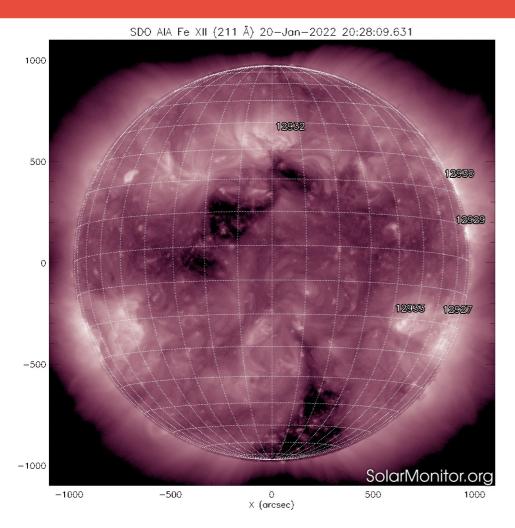
http://solarmonitor.org

Atmósfera solar y regiones activas

El Sol en rayos X suaves (171 Å). La emisión de Fe IX y X revela la estructura magnética en la región de la atmósfera solar llamada corona solar que se encuentra a 630,000 K.

Las regiones activas (zonas claras) son los lugares donde se presentan los fenómenos de actividad solar más importantes. Las regiones activas están regularmente asociadas a las manchas solares.

El Sol hoy:


Se observan cinco regiones activas en la región oeste del disco solar.

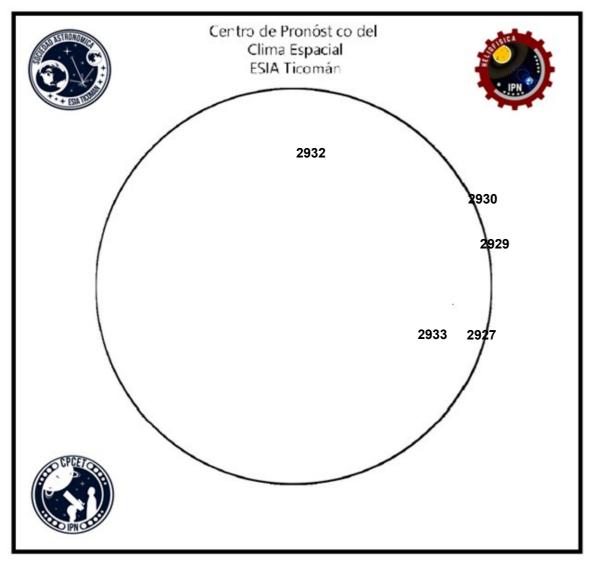
http://solarmonitor.org

Corona solar

El Sol en rayos X suaves (211 Å). La emisión de Fe XIV revela la estructura magnética en la alta corona que se encuentra a 2,000,000 K.

Los hoyos coronales (regiones oscuras) son regiones de campo magnético solar localmente abierto. Los hoyos coronales son fuente de las corrientes de viento solar rápido.

El Sol:


Se observan múltiples hoyos coronales dispersos en el disco solar. En particular, hay un hoyo en la región ecuatorial.

http://solarmonitor.org

Número de Wolf

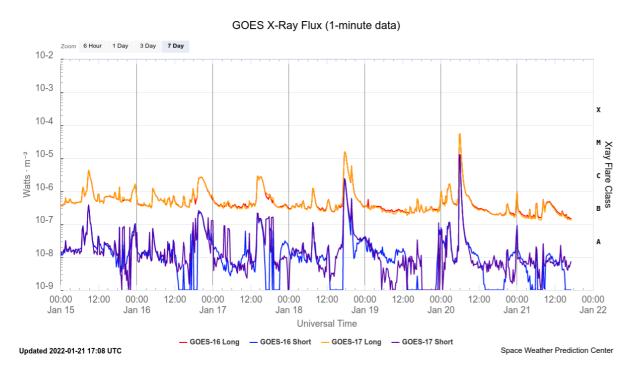
El número de Wolf es un valor que permite evaluar numéricamente la actividad solar mediante el conteo de manchas solares ubicadas sobre la superficie del Sol. Este se calcula a partir de la fórmula desarrollada por Rudolf Wolf en 1849:

W=k(10 * G+F)

Donde:

K= Es un factor de corrección que depende de cada observatorio.

F= Cantidad total de manchas solares visibles sobre el disco solar.


G= Cantidad de grupos manchas solares visibles sobre el disco solar.

Número de Wolf máximo esta semana: 102

Durante este semana se pudieron observar tres regiones activas en la superficie del Sol. Estas fueron la 2859. 2860 y 2861 con coordenadas N18W82, S27W73 y N16W34 respectivamente.

Actividad solar: Fulguraciones solares

Flujo de rayos X solares detectado por los satélites GOES.

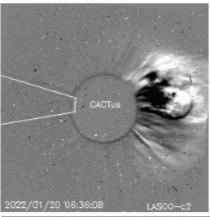
Se registraron dos fulguraciones clase M (1.5 y 5.5) los días 18 y 20 de enero. Adicionalmente, se han presentado múltiples fulguraciones clase C durante la semana.

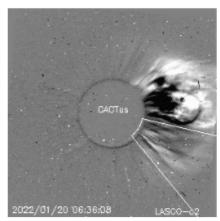
Este aumento de actividad solar es debido a la fase ascendente del ciclo solar.

Imágenes: http://services.swpc.noaa.gov/

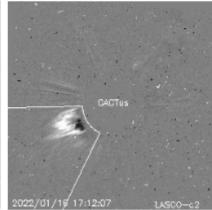
Actividad solar: Eyecciones de Masa Coronal

Se registraron 18 EMCs. 0 en aparente dirección hacia la Tierra.


Mediciones de salida de EMC de mayor dimensión y velocidad de esta semana:


Fecha, tiempo inicial, velocidad promedio (km/s)

2022/01/20 07:00 1734 2022/01/20 06:12 2291 2022/01/18 17:48 899 2022/01/16 16:00 448


 Eyecciones observadas por SOHO/LASCO con cálculos del sitio CACTUS.

Credito imagenes y valores estimados: SOHO, the SOLAR & Heliospheric Observatory https://wwwbis.sidc.be/cactus/

Medio interplanetario: El viento solar cercano a la Tierra

Modelo numérico WSA-ENLIL.

Al día de hoy 20 de enero de 2022, el modelo pronostica el arribo de corrientes de viento lento con velocidades de aproximadamente 300 km/s para los días siguientes. No pronostica el arribo de alguna EMC para la próximos días.

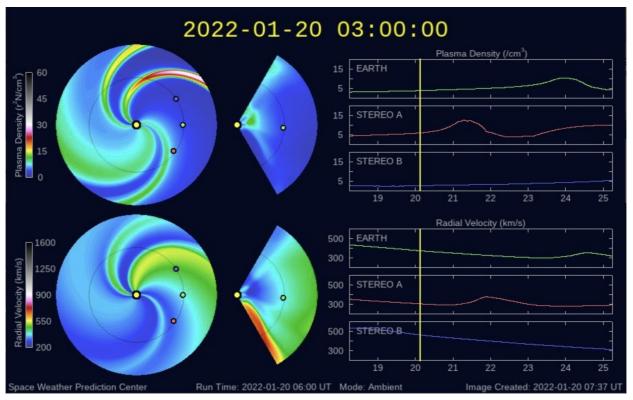


Imagen: http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction

Medio interplanetario: Región de interacción de viento solar

Servicio Clima Espacial

Esta semana se registró una región de interacción (RI) y dos flancos de eyección de masa coronal (ver áreas sombreadas en gris y amarillo, respectivamente en imagen 2). El origen del viento solar rápido que generó a la RI es un hoyo coronal que se extiende desde el polo sur hasta latitudes bajas (CH1 en imagen 1). Dichas estructuras generaron actividad geomagnética: Kp=6, Kp=5 y Kp=6, mientras que Dst=-94 nT, Dst=-52 nT y Dst=-45 nT.

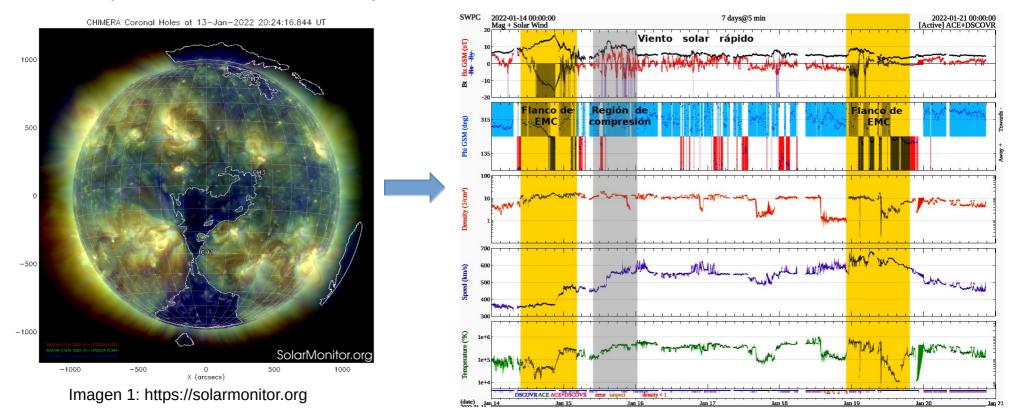
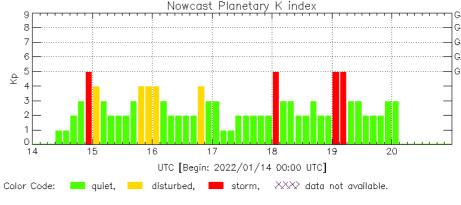


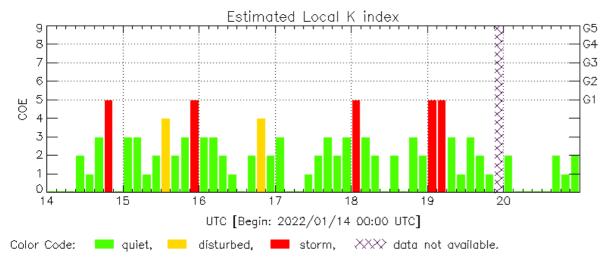
Imagen 3: http://www.swpc.noaa.gov/products/real-time-solar-wind

Perturbaciones geomagnéticas: Índices geomagnéticos Kp y Kmex



Servicio Clima Espacia

Se registraron tormentas geomagnéticas clase G1 en los índices Kp y Kmex. Las tormentas fueron provocadas por el tránsito por la órbita terrestre de una región de compresión en el viento solar.


NOTA: El cálculo del índice Kmex se realiza por la estación geomagnética de Coeneo, Mich. Los datos son experimentales y no se deben de tomar como definitivos.

Datps: www.gfz-potsdam.de/en/kp-index/

Kp: by GFZ German Research Center for Geosciencies https://www.gfz-potsdam.de/en/kp-index/

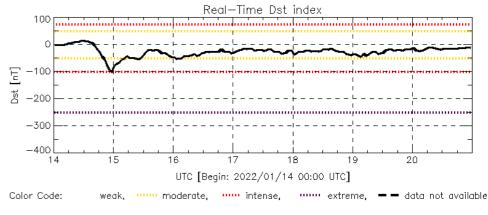
Updated: 2022/01/20-23:59 UTC

El índice K indica la intensidad de las variaciones del campo magnético terrestre en intervalos de 3 horas.

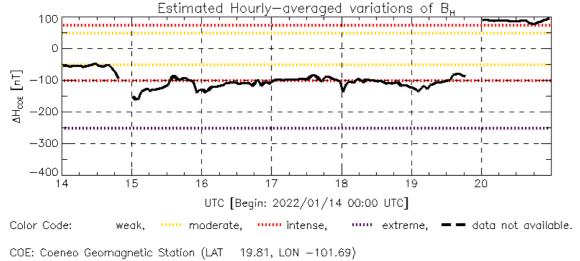
El índice Kp lo expresa a escala planetaria, mientras que el Kmex lo hace para el territorio mexicano.

COE: Coeneo Geomagnetic Station (LAT 19.81, LON -101.69) LANCE/SCIESMEX - Morelia, Mich., MX

Updated: 2022/01/21-00:59 UTC


Perturbaciones geomagnéticas: Índice Dst y AH

Se registraron perturbaciones geomagnéticas moderadas en los índices Dst y ΔH durante la semana. Debidas a una región de compresión en el viento solar.


NOTA: El cálculo del índice ΔH se realiza por la estación geomagnética de Coeneo, Mich. Los datos son experimentales y no se deben de tomar como definitivos.

Dst: by World Data Center for Geomagnetism, Kyoto http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/

Updated: 2022/01/20-23:59 UTC

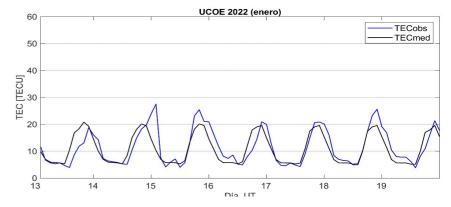
Los índices Dst y ΔH miden las variaciones temporales de la componente horizontal del campo geomagnético, el primero a escala planetaria y el segundo para México.

Estas variaciones, en general, se deben al ingreso de partículas cargadas, provenientes del espacio exterior, al ambiente espacial terrestre.

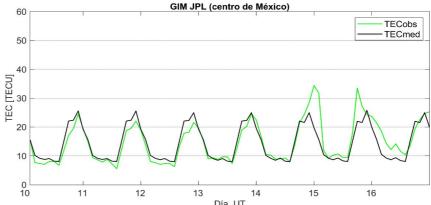
LANCE/SCIESMEX - Morelia, Mich., MX

Updated: 2022/01/21-00:59 UTC

Ionósfera sobre México TEC en el centro del país

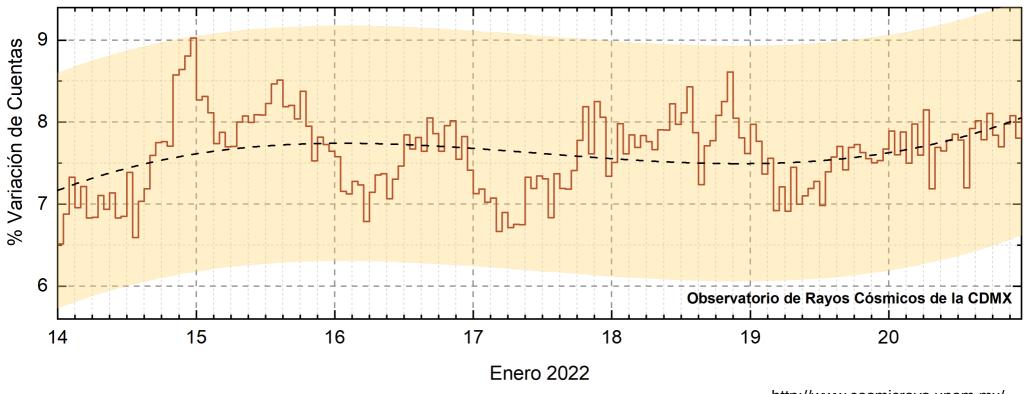


El contenido total de electrones (TEC) es un parámetro que sirve para caracterizar el estado de la ionosfera de la Tierra.


Series temporales de los valores de TEC (TECobs) con referencia a su valor mediano (TECmed):

(1) con base en los datos de la estación local UCOE (TLALOCNet, UNAVCO) ubicada en las instalaciones del MEXART

El cálculo se realiza en base del software "TayAbsTEC" del Instituto de Física Solar-Terrestre, SB RAS. Referencia: Yasyukevich et al., 2015, doi: 10.1134/S001679321506016X.


(2) con base de los mapas ionosféricos globales (GIM JPL)

Según los datos locales, se observaron valores de TEC aumentados (el 14-15 y 19 de enero) y disminuidos (en los otros días de la semana). Los datos globales disponibles confirman esta tendencia. Estas variaciones no son significativas.

Rayos Cósmicos:

http://www.cosmicrays.unam.mx/

Datos registrados por el Observatorio de Rayos Cósmicos de la Ciudad de México. La curva discontinua negra representa el promedio de los datos registrados, el área coloreada en amarillo representa la significación de los datos (±3σ). Cuando se registran variaciones que salen del área, es probable que éstas sean atribuidas a efectos de emisiones solares en el flujo de rayos cósmicos.

Del 14 al 20 de enero de 2022, no se detectaron variaciones significativas (±3σ) en las cuentas de rayos cósmicos.

Créditos

Servicio Clima Espacial

UNAM/LANCE/SCIESMEX

Dr. J. Américo González Esparza

Dr. Pedro Corona Romero

Dra. Maria Sergeeva

Dr. Julio C. Mejía Ambriz

Dr. Luis Xavier González Méndez

Dr. José Juan González Avilés

Ing. Ernesto Andrade Mascote

M.C. Pablo Villanueva Hernández

Ing. Adan Espinosa Jiménez

Ing. Juan Luis Godoy Hernández

Dr. Ernesto Aguilar-Rodriguez

Dra. Verónica Ontiveros

Dra. Tania Oyuki Chang Martínez

M.C. Juan José D'Aquino

Dr. Víctor José Gatica Acevedo

M.C. Angela Melgarejo Morales

Isaac David Orrala Legorreta

UNAM ENES-Morelia

Dr. Mario Rodríguez Martínez

Dr. Víctor De la Luz Rodríguez

Lic. Shaden Saray Hernández Anaya

M.C. Raúl Gutiérrez Zalapa

Rafael Zavala Molina

Vanessa Arriaga Contreras

UNAM/PCT

Lic. Elizandro Huipe Domratcheva

M.C. Víctor Hugo Méndez Bedolla

M.C. Elsa Sánchez García

M.C. Carlos Arturo Pérez Alanis

UANL/LANCE

Dr. Eduardo Pérez Tijerina

Dr. Enrique Pérez León

Dr. Carlos de Meneses Junior

Dra. Esmeralda Romero Hernández

Elaboración: Pedro Corona Romero

Revisión: Ernesto Aguilar Rodríguez

UNAM/IGF/RAYOS CÓSMICOS

Dr. José Francisco Valdés Galicia

Fis. Alejandro Hurtado Pizano

Ing. Octavio Musalem Clemente

SERVICIO MAGNÉTICO

M.C. Esteban Hernández Quintero

M.C. Gerardo Cifuentes Nava

Dra. Ana Caccavari Garza

CPCET/SAET-IPN

Ing. Julio César Villagrán Orihuela

Miguel Daniel González Arias

Carlos Escamilla León

Jessica Juárez Velarde

Pablo Romero Minchaca

Eric Bañuelos Gordillo

Alfonso Iván Verduzco Torres

Alain Mirón Velázquez

Christian Armando Ayala López

Katia Lisset Ibarra Sánchez

Angel Alfonso Valdovinos Córdoba

Créditos

Agradecimientos

El Laboratorio Nacional de Clima Espacial (LANCE) es parcialmente financiado por: el programa Cátedras CONACYT Proyecto 1045 y el Fondo Sectorial AEM-CONACYT proyecto 2014-01-247722. Agradecemos al proyecto Conacyt – Repositorio Institucional de Clima Espacial 268273. Agradecemos al proyecto AEM-2018-01-A3-S-63804 del Fondo Sectorial CONACYT-AEM. Agradecemos a todos los responsables y colaboradores de instrumentos del LANCE y a las redes de estaciones GPS del Servicio Sismológico Nacional y TlalocNET por facilitar sus datos. Agradecemos a Gerardo Cifuentes, Esteban Hernández y Ana Caccavari por los datos del Observatorio Magnético de Teoloyucan. De igual forma, agradecemos los servicios de IGS (International **GNSS** Service) permitirnos IONEX disponibles por usar los datos https://cddis.nasa.gov/archive/gnss/products/ionex. Los valores de TEC fueron obtenidos a partir de observaciones de las redes GPS del Servicio Sismológico Nacional (SSN), SSN-TLALOCNet y TLALOCNet del Servicio de Geodesia Satelital (SGS). Agradecemos al personal del SSN y del SGS por el mantenimiento de estaciones, la adquisición de datos y el soporte de IT de estas redes. Las operaciones de la red TLALOCNet y SSN-TLALOCNet GPS han sido apoyadas por The National Science Foundation bajo el proyecto EAR-1338091 a UNAVCO Inc., los proyectos CONACyT 253760 y 256012 y los proyectos UNAM-PAPIIT IN109315-3 y IN104818-3 de E. Cabral-Cano y el proyecto UNAM-PAPIIT IN111509 de R. Pérez. De igual forma, agradecemos a los proyectos de infraestructura del CONACyT: 253691 y del PAPIIT-DGAPA: IA107116 para el fortalecimiento de equipos como la estación fija de GPS, que forman parte del LACIGE-UNAM, de la ENES unidad Morelia a cargo de M. Rodríguez-Martínez, El cálculo de TEC se realiza: 1) utilizando el software US-TEC que es un producto de operación del Space Weather Prediction Center (SWPC), desarrollado a través de una colaboración entre National Geodetic Survey, National Oceanic and Atmospheric Administration (NOAA) y el Cooperative Institute for Research in Environmental Sciences of the University of Boulder, Colorado, 2) con base en el software TayAbsTEC del Instituto de Física Solar-Terrestre, sección Siberiana de la Academia de Ciencias Rusa. Parte del procesamiento de datos se lleva a cabo dentro del centro de Supercómputo de Clima Espacial (CESCOM) del LANCE. Así mismo agradecemos al Space Weather Forecasting Center for Astrophysics & Space Research de la University of California in San Diego y al Korean Space Weather Center por los datos de pronóstico para los modelos WSA-ENLIL y los mapas tomográficos por IPS. Agradecemos a la red e-callisto por los datos proporcionados de espectros electromagnéticos dinámicos de la red internacional de registro de eventos de radio solares.

LAN(E

Créditos

Servicio Clima Espacial

Datos

Imágenes de coronógrafo, flujo de rayos X y modelo WSA-ENLIL:

http://www.swpc.noaa.gov/products

http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/

Imágenes de coronógrafo:

http://sohowww.nascom.nasa.gov/data/

Imágenes del disco solar y de la fulguración:

http://www.solarmonitor.org/

Detección y caracterización de EMCs:

http://www.sidc.oma.be/cactus/out/latestCMEs.html

http://spaceweather.gmu.edu/seeds/

ISES:

http://www.spaceweather.org/

International Network of Solar Radio Spectrometers (e-callisto):

http://www.e-callisto.org/

German Research Center For Geociencies Postdam:

http://www.gfz-potsdam.de/en/sektion/erdmagnetfeld/daten-dienst e/kp-index/

Data Analysis Center for Geomagnetism and Space

Magnetism, Kyoto University:

http://wdc.kugi.kyoto-u.ac.jp/index.html

UNAVCO:

http://www.unavco.org

SSN:

http://www.sismologico.unam.mx/

SOHO Spacecraft NASA:

http://sohowww.nascom.nasa.gov/

SDO Spacecraft NASA:

http://sdo.gsfc.nasa.gov/

Space Weather Prediction Center NOAA:

http://www.swpc.noaa.gov

GOES Spacecraft NOAA:

http://www.ngdc.noaa.gov/stp/satellite/goes/index.html

ACE Spacecraft NOAA

http://www.srl.caltech.edu/ACE/ASC/index.html