

Reporte Semanal de Clima Espacial

https://www.sciesmex.unam.mx/blog/category/reporte-semanal-de-clima-espacial/

Reporte semanal: del 14 al 22 de junio de 2023

CONDICIONES DEL SOL

Regiones Activas (RA): 14, ocho en el hemisferio norte y seis en el hemisferio sur.

Eyecciones de Masa Coronal: 40, de las cuales 4 fueron tipo halo.

Hoyos coronales: 2, uno en el hemisferio norte y uno sobre el ecuador de tamaño pequeño.

Fulguraciones solares: 10 tipo M y una tipo X (X1.09).

CONDICIONES DEL MEDIO INTERPLANETARIO

Se registró una corriente de viento solar rápida que generó actividad geomagnética.

La Red de Espectrómetros Callisto detectó 31 estallidos de radio Tipo III , tres Tipo II, uno Tipo IV y dos Tipo V.

CONDICIONES DE MAGNETÓSFERA

Se registró actividad geomagnética moderada.

CONDICIONES DE LA IONOSFERA

No se registraron perturbaciones ionosféricas significativas.

CONDICIONES DE RAYOS CÓSMICOS SOBRE MÉXICO

No se registraron perturbaciones significativas en los flujos de rayos cósmicos.

Reporte semanal: Pronóstico del 23 al 29 de junio de 2023

PRONÓSTICOS

Viento solar:

 Se pronostica, para los próximos días, el arribo de viento solar lento con velocidades entre 350 y 450 km/s.

Fulguraciones solares:

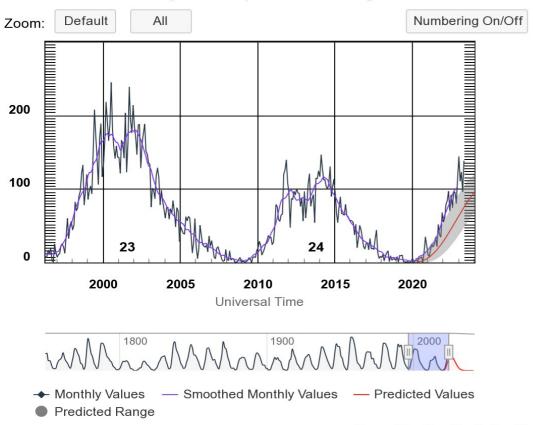
• Debido a la presencia de regiones activas en el disco solar, existe la posibilidad de que se presenten fulguraciones en los próximos días.

Tormentas ionosféricas:

 Hay baja probabilidad de perturbaciones ionosféricas moderadas. No se esperan eventos significativos.

Tormentas geomagnéticas:

Hay baja probabilidad de actividad geomagnética moderada.


Tormentas de radiación de partículas:

• Hay probabilidad de tormentas de radiación. No se esperan eventos significativos.

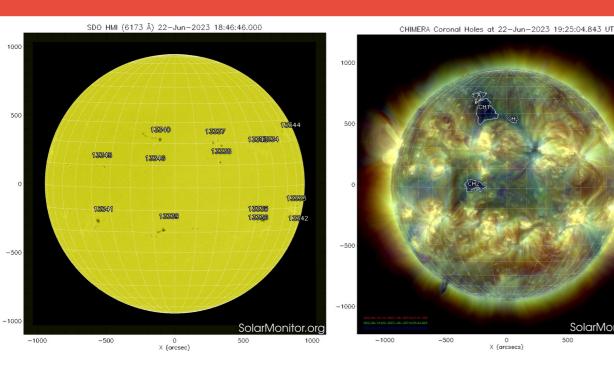
Ciclo de manchas solares y la actividad solar

ISES Solar Cycle Sunspot Number Progression

La figura muestra el conteo del número de manchas solares desde enero de 1996 a la fecha.

Entre más manchas solares presente el Sol, es mayor la posibilidad de que ocurra una tormenta solar.

Ya pasamos el mínimo de manchas solares del ciclo 24 y ahora estamos en la fase ascendente del ciclo 25. El máximo de manchas se pronostica para el 2025.


Space Weather Prediction Center

http://www.swpc.noaa.gov/products/solar-cycle-progression

Sunspot Number

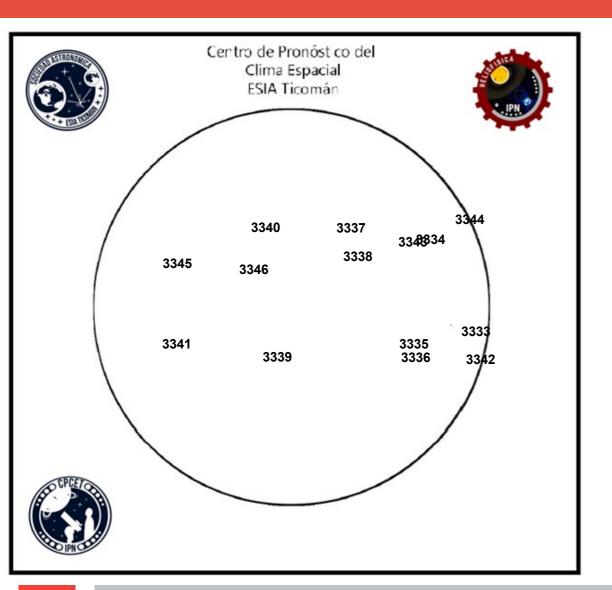
Fotosfera y atmósfera solar

http://solarmonitor.org

La imagen del día de hoy, 22 de junio de 2023, muestra 14 regiones activas, ocho en el hemisferio norte y seis en el hemisferio sur (ver imagen de la izquierda).

Además, se observa un hoyo coronal pequeño en el hemisferio norte y uno en el ecuador (ver CH1 y CH2, respectivamente en imagen de la derecha).

El Sol, visto en distintas longitudes de onda, muestra diferentes capas solares.


A la izquierda: La superficie solar (fotosfera) vista en luz visible. En esta zona se aprecian las manchas solares (zonas obscuras) asociadas con las regiones activas, las cuales concentran intensos campos magnéticos y son la principal fuente de la actividad solar.

A la derecha: Imagen del disco solar compuesta por diferentes longitudes de onda. La imagen facilita la identificación de hoyos coronales (regiones azul oscuro) que son fuente de campo magnético solar localmente abierto y también son el origen de las corrientes de viento solar rápido.

Número de Wolf

Laboratorio Nacional de Clima Espacial

El número de Wolf es un valor que permite evaluar numéricamente la actividad solar mediante el conteo de manchas solares ubicadas sobre la superficie del Sol. Este se calcula a partir de la fórmula desarrollada por Rudolf Wolf en 1849:

W=k(10*G+F)

Donde:

K= Es un factor de corrección que depende de cada observatorio.

F= Cantidad total de manchas solares visibles sobre el disco solar.

G= Cantidad de grupos manchas solares visibles sobre el disco solar.

Número de Wolf máximo esta semana: 213

Durante este semana se pudieron observar catorce regiones activas en la superficie del Sol. Estas fueron la 3333, 3334, 3335, 3336, 3337, 3338, 3339, 3340, 3341, 3342, 3343, 3344, 3345 y 3346 con coordenadas S11W69, N16W47, S15W40, S19W41, N20W18,

N11W20, T18E04, N21E08, T15E36, S21W91, N16W40, N22W70, N09E36 y N08E10 respectivamente.

Cromosfera solar

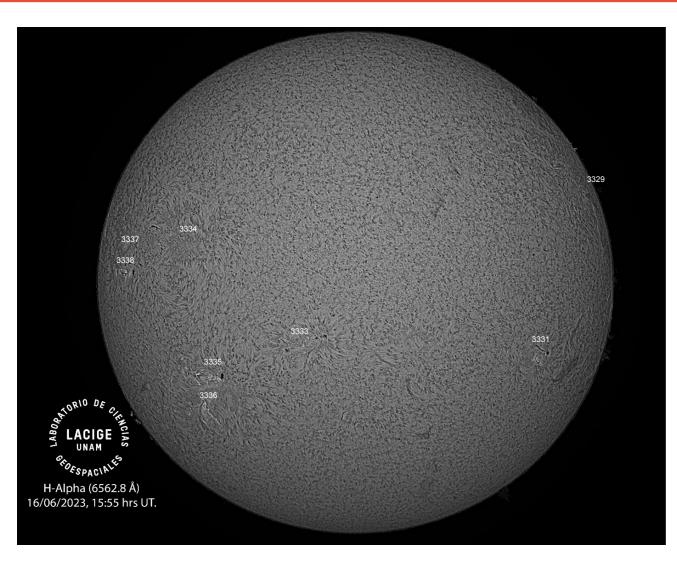


Imagen de la cromosfera solar en H-Alpha (6562.8 Å) para el día 16/06/2023, 15:55 hrs UT.

La imagen muestra un acercamiento a las regiones activas 3329, 3331, 3333, 3334, 3335, 3336, 3337 y 3338 observadas para esta fecha en el disco solar.

Cromosfera solar

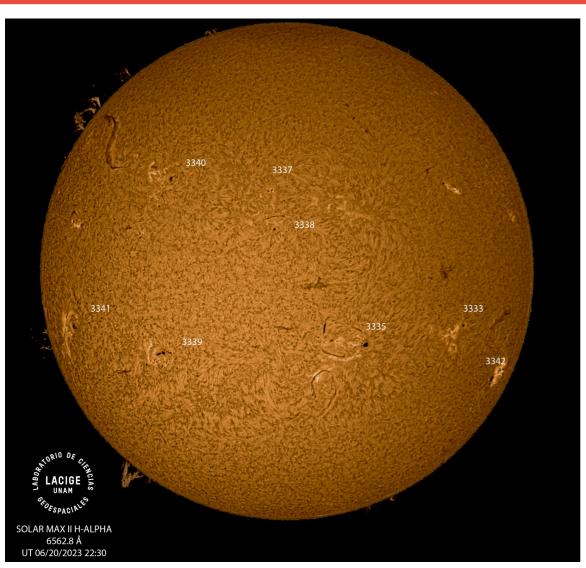


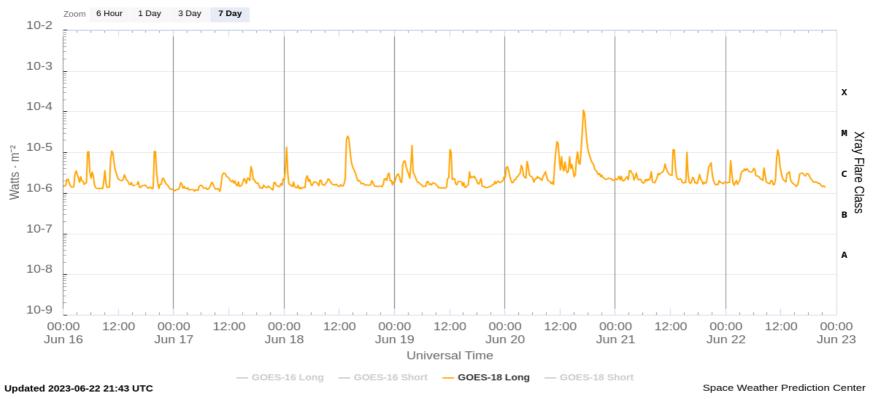
Imagen de la cromosfera solar en H-Alpha (6562.8 Å) para el día 20/06/2023, 22:30 hrs UT.

La imagen muestra un acercamiento a las regiones activas 3333, 3335, 3337, 3338, 3339, 3340, 3341 y 3342 observadas para esta fecha en el disco solar.

Cromosfera solar

Imagen de la cromosfera solar en H-Alpha (6562.8 Å) para el día 22/06/2023, 20:17 hrs UT.

La imagen muestra un acercamiento a las regiones activas 3333, 3335, 3337, 3338, 3339, 3340, 3341, 3342, 3345 y 3346 observadas para esta fecha en el disco solar.

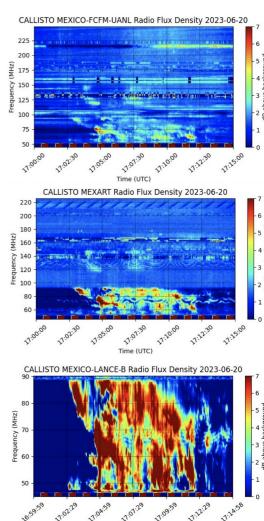


Actividad solar: Fulguraciones solares

Flujo de rayos X solares detectado por el satélite GOES 17 de la NOAA.

Durante la semana, se registraron diez fulguraciones tipo M (M1.04, M1.07, M1.05, M1.32, M2.5, M1.46, M1.18, M1.82, M1.16 y M1.15), así como una tipo X (X1.09).




https://www.swpc.noaa.gov/products/goes-x-ray-flux

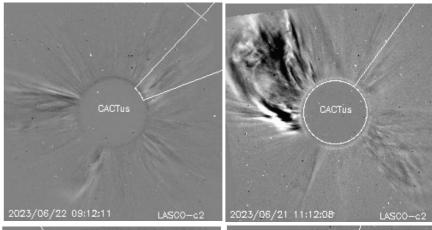
Estallidos de radio solares: Observaciones de la REC-Mx

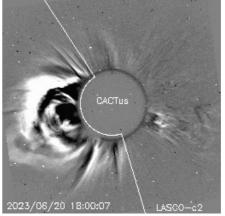
En esta semana la Red de Espectrómetros Callisto de México (REC-Mx) detectó 31 estallidos de radio Tipo III, tres Tipo II, uno Tipo IV y dos Tipo V.

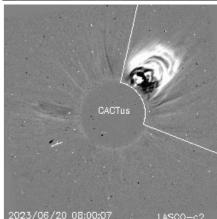
Actividad solar: Eyecciones de Masa Coronal

Se registraron 40 EMCs. 4 tipo halo (ancho > 90°)

Mediciones de salida de EMC de mayor dimensión y velocidad de esta semana:


Fecha, tiempo inicial, velocidad promedio (km/s)


2023/06/22 08:48 431 2023/06/21 10:24 1644 2023/06/20 17:24 651


2023/06/20 05:24 229

- Eyecciones observadas por SOHO/LASCO con cálculos del sitio CACTUS.

Crédito, imágenes y valores estimados: SOHO, the SOLAR & Heliospheric Observatory https://www.bis.sidc.be/cactus/

Medio interplanetario: El viento solar cercano a la Tierra

Modelo numérico WSA-ENLIL.

Al día de hoy 22 de junio de 2023, el modelo pronostica el arribo de corrientes de viento solar lento con que velocidades de aproximadamente 350 km/s. No pronostica el arribo de ninguna EMC para las próximos días.

Imagen: http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction

Medio interplanetario: Región de interacción de viento solar

Esta semana se registró un viento solar rápido (ver área sombreada en gris en imagen 2). La región fuente del viento solar rápido es un hoyo coronal localizado en latitudes bajas (ver CH1 en imagen 1). Dicha estructura generó actividad geomagnética: kp=6 y Dst> -50 nT.

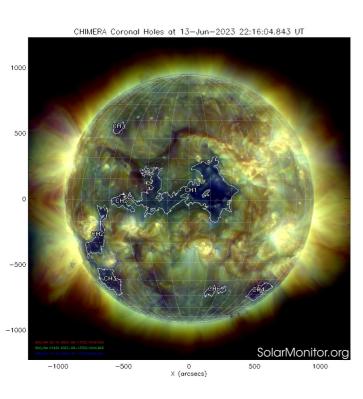


Imagen 1: https://sdo.gsfc.nasa.gov/

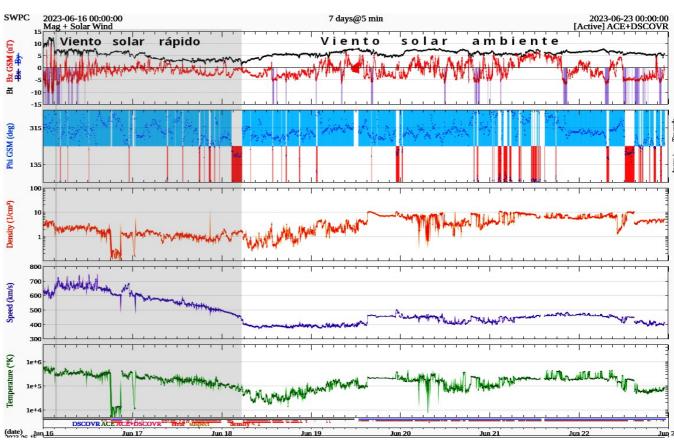
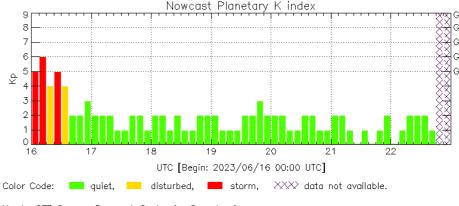
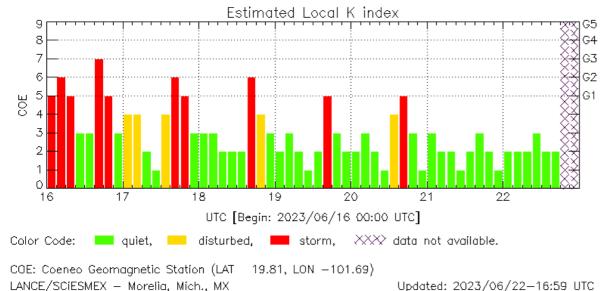


Imagen 2: http://www.swpc.noaa.gov/products/real-time-solar-wind


Perturbaciones geomagnéticas: Índices geomagnéticos Kp y Kmex

Se registraron valores de tormenta geomagnética G2 y G3 en los índices Kp (K=6) y Kmex (K=7) el 16 y 17 de junio. La actividad geomagnética fue provocada por corrientes de viento solar con componente Bz sur intermitente que impactaron el ambiente terrestre desde el 15 de junio .

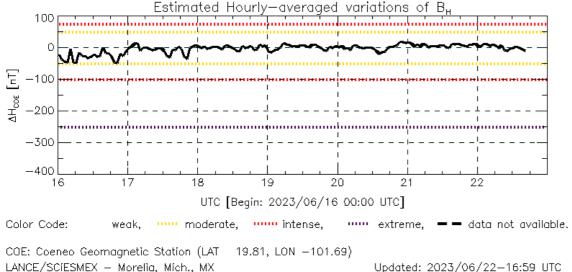

NOTA: El cálculo del índice Kmex se realiza por la estación geomagnética de Coeneo, Mich. Los datos son experimentales y no se deben de tomar como definitivos.

Datos: www.gfz-potsdam.de/en/kp-index/

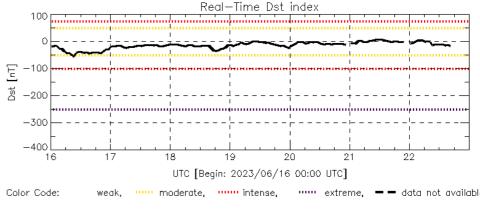
 $\label{eq:Kp:Bound} \mbox{Kp: by GFZ German Research Center for Geosciencies } \mbox{https://www.gfz-potsdam.de/en/kp-index/}$

Updated: 2023/06/22-16:59 UTC

El índice K indica la intensidad de las variaciones del campo magnético terrestre en intervalos de 3 horas.


El índice Kp lo expresa a escala planetaria, mientras que el Kmex lo hace para el territorio mexicano.

Perturbaciones geomagnéticas: Índice Dst y ΔH



Se registró actividad geomagnética débil y moderada en los índices dst y ΔH el 16 y 17 de junio. La actividad geomagnética fue provocada por corrientes en el viento solar con componente Bz sur intermitente que impactaron el ambiente terrestre desde el 15 de junio

NOTA: El cálculo del índice ΔH se realiza por la estación geomagnética de Coeneo, Mich. Los datos son experimentales y no se deben de tomar como definitivos.

Datos: wdc.kugi.kyoto-u.ac.jp/dst_realtime/

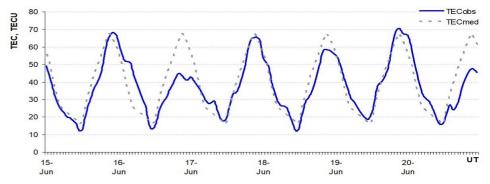
Dst: by World Data Center for Geomagnetism, Kyoto http://wdc.kugi.kyoto-u.ac.jp/dst_realtime/

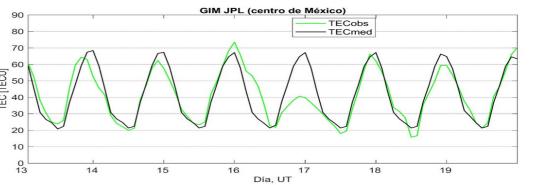
Updated: 2023/06/22-16:59 UTC

Los índices Dst y ΔH miden las variaciones temporales de la componente horizontal del campo geomagnético, el primero a escala planetaria y el segundo para México.

Estas variaciones, en general, se deben al ingreso de partículas cargadas, provenientes del espacio exterior, al ambiente espacial terrestre.

Ionósfera sobre México: TEC en el centro del país

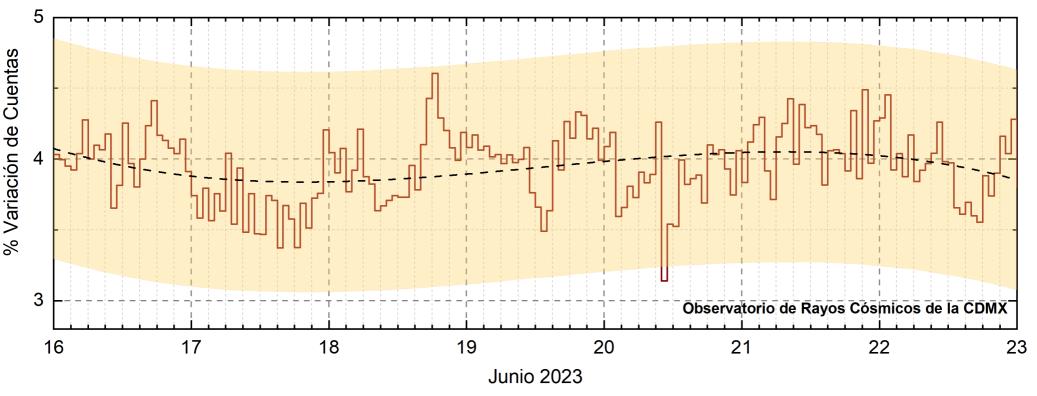

El contenido total de electrones (TEC) es un parámetro que sirve para caracterizar el estado de la ionosfera de la Tierra.


Series temporales de los valores de TEC (TECobs) con referencia a su valor mediano (TECmed) obtenidas de:

1) Estación local UCOE, receptor ubicado en las instalaciones del MEXART

El cálculo se realiza en base del software "TayAbsTEC" del Instituto de Física Solar-Terrestre, SB RAS. Referencia: Yasyukevich et al., 2015, doi: 10.1134/S001679321506016X.

2) Mapas ionosféricos globales (GIM JPL)


Durante el periodo reportado se observaron valores de TEC aumentados (el 16 de junio) y disminuidos (el 16, 18 y 20 de junio)

Rayos Cósmicos:

http://www.cosmicrays.unam.mx/

Datos registrados por el Observatorio de Rayos Cósmicos de la Ciudad de México. La curva discontinua negra representa el promedio de los datos registrados, el área coloreada en amarillo representa la significancia de los datos ($\pm 3\sigma$). Cuando se registran variaciones que salen del área, es probable que éstas sean atribuidas a efectos de emisiones solares en el flujo de rayos cósmicos. Del 16 al 22 de junio de 2023, no se detectaron variaciones significativas ($\pm 3\sigma$) en las cuentas de rayos cósmicos.

Créditos

Servicio Clima Espacial

UNAM/LANCE/SCIESMEX

Dr. J. Américo González Esparza

Dr. Pedro Corona Romero

Dra. Maria Sergeeva

Dr. Julio C. Mejía Ambriz

Dr. Luis Xavier González Méndez

Dr. José Juan González Avilés

Ing. Ernesto Andrade Mascote

M.C. Pablo Villanueva Hernández

Dr. Ernesto Aguilar-Rodriguez

Dra. Verónica Ontiveros

Dra. Tania Oyuki Chang Martínez

Dr. Víctor José Gatica Acevedo

Dra. Angela Melgarejo Morales

Isaac David Orrala Legorreta

UNAM ENES-Morelia

Dr. Mario Rodríguez Martínez

M.C. Raúl Gutiérrez Zalapa

Ing. Ariana Varela Mendez

Mateo Peralta Mondragón

Jaquelin Mejía Orozco

Grace Diane Jiménez González

UNAM/PCT

Dra. Elsa Sánchez García

M.C. Carlos Arturo Pérez Alanis

M.C. Isaac Castellanos Velasco

UANL/LANCE

Dr. Eduardo Pérez Tijerina

Dra. Esmeralda Romero Hernández

UNAM/IGF/RAYOS CÓSMICOS

Dr. José Francisco Valdés Galicia

Fis. Alejandro Hurtado Pizano

Ing. Octavio Musalem Clemente

SERVICIO MAGNÉTICO

M.C. Esteban Hernández Quintero

M.C. Gerardo Cifuentes Nava

Dra. Ana Caccavari Garza

GPCEET/SAET-IPN

Ing. Julio César Villagrán Orihuela

Miguel Daniel González Arias

Carlos Escamilla León

Pablo Romero Minchaca

Alfonso Iván Verduzco Torres

Claudia López Martínez

Ana María Ramírez Reyes

Emiliano Campos Castañeda

Elaboración: Elsa Sánchez García

Revisión: Ernesto Aguilar Rodríguez

Agradecimientos

El Laboratorio Nacional de Clima Espacial (LANCE) es parcialmente financiado por: el programa Cátedras CONACYT Proyecto 1045 y el Fondo Sectorial AEM-CONACYT proyecto 2014-01-247722. Agradecemos al proyecto Conacyt – Repositorio Institucional de Clima Espacial 268273. Agradecemos al proyecto AEM-2018-01-A3-S-63804 del Fondo Sectorial CONACYT-AEM. Agradecemos a todos los responsables y colaboradores de instrumentos del LANCE y a las redes de estaciones GPS del Servicio Sismológico Nacional y TlalocNET por facilitar sus datos. Agradecemos a Gerardo Cifuentes, Esteban Hernández y Ana Caccavari por los datos del Observatorio Magnético de Teoloyucan. De igual forma, agradecemos los servicios de IGS (International **GNSS** Service) permitirnos datos IONEX disponibles por usar los https://cddis.nasa.gov/archive/gnss/products/ionex. Los valores de TEC fueron obtenidos a partir de observaciones de las redes GPS del Servicio Sismológico Nacional (SSN), SSN-TLALOCNet y TLALOCNet del Servicio de Geodesia Satelital (SGS). Agradecemos al personal del SSN y del SGS por el mantenimiento de estaciones, la adquisición de datos y el soporte de IT de estas redes. Las operaciones de la red TLALOCNet y SSN-TLALOCNet GPS han sido apoyadas por The National Science Foundation bajo el proyecto EAR-1338091 a UNAVCO Inc., los proyectos CONACyT 253760 y 256012 y los proyectos UNAM-PAPIIT IN109315-3 y IN104818-3 de E. Cabral-Cano y el proyecto UNAM-PAPIIT IN111509 de R. Pérez. De igual forma, agradecemos a los proyectos de infraestructura del CONACyT: 253691 y del PAPIIT-DGAPA: IA107116 para el fortalecimiento de equipos como la estación fija de GPS, que forman parte del LACIGE-UNAM, de la ENES unidad Morelia a cargo de M. Rodríguez-Martínez, El cálculo de TEC se realiza: 1) utilizando el software US-TEC que es un producto de operación del Space Weather Prediction Center (SWPC), desarrollado a través de una colaboración entre National Geodetic Survey, National Oceanic and Atmospheric Administration (NOAA) y el Cooperative Institute for Research in Environmental Sciences of the University of Boulder, Colorado, 2) con base en el software TayAbsTEC del Instituto de Física Solar-Terrestre, sección Siberiana de la Academia de Ciencias Rusa. Parte del procesamiento de datos se lleva a cabo dentro del centro de Supercómputo de Clima Espacial (CESCOM) del LANCE. Así mismo agradecemos al Space Weather Forecasting Center for Astrophysics &Space Research de la University of California in San Diego y al Korean Space Weather Center por los datos de pronóstico para los modelos WSA-ENLIL y los mapas tomográficos por IPS. Agradecemos a la red e-callisto por los datos proporcionados de espectros electromagnéticos dinámicos de la red internacional de registro de eventos de radio solares.

LAN(E

Créditos

Servicio Clima Espacial

Datos

Imágenes de coronógrafo, flujo de rayos X y modelo WSA-ENLIL:

http://www.swpc.noaa.gov/products

http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/

Imágenes de coronógrafo:

http://sohowww.nascom.nasa.gov/data/

Imágenes del disco solar y de la fulguración:

http://www.solarmonitor.org/

Detección y caracterización de EMCs:

http://www.sidc.oma.be/cactus/out/latestCMEs.html

http://spaceweather.gmu.edu/seeds/

ISES:

http://www.spaceweather.org/

International Network of Solar Radio Spectrometers (e-callisto):

http://www.e-callisto.org/

German Research Center For Geociencies Postdam:

http://www.gfz-potsdam.de/en/sektion/erdmagnetfeld/daten-dienst e/kp-index/

Data Analysis Center for Geomagnetism and Space

Magnetism, Kyoto University:

http://wdc.kugi.kyoto-u.ac.jp/index.html

UNAVCO:

http://www.unavco.org

SSN:

http://www.sismologico.unam.mx/

SOHO Spacecraft NASA:

http://sohowww.nascom.nasa.gov/

SDO Spacecraft NASA:

http://sdo.gsfc.nasa.gov/

Space Weather Prediction Center NOAA:

http://www.swpc.noaa.gov

GOES Spacecraft NOAA:

http://www.ngdc.noaa.gov/stp/satellite/goes/index.html

ACE Spacecraft NOAA

http://www.srl.caltech.edu/ACE/ASC/index.html